
 

 

Abstract - In recent years, various types of applications of elec-
tromagnetic techniques for microwave thermal therapy have 
been developed.  Among them, minimally invasive microwave 
thermal therapies for cancer are of great interest.  They are in-
terstitial microwave hyperthermia and microwave coagulation 
therapy.  In this paper, we describe the characteristics of thin 
coaxial antennas for those therapies. 
Keywords - Minimally invasive microwave thermal therapy, hy-
perthermia, microwave coagulation therapy, thin coaxial an-
tenna 
 

I. INTRODUCTION 
 

In recent few decades, various types of medical applica-
tions of microwaves have widely been investigated and re-
ported [1].  In particular, minimally invasive microwave 
thermal therapies using thin applicators are of great interest.  
They are interstitial microwave hyperthermia [2] and micro-
wave coagulation therapy (MCT) for medical treatment of 
cancer [3], cardiac catheter ablation for ventricular arrhyth-
mia treatment [4], and so on. 

The authors have been studying thin coaxial antennas for 
the interstitial microwave hyperthermia and the MCT.  In this 
paper, first, we describe the heating characteristics of the an-
tennas for the interstitial microwave hyperthermia, particu-
larly, in the case of combining the hyperthermia and the inter-
stitial radiation therapy.  Next, we show the modality of the 
MCT and some problems of conventional antennas.  More-
over, we introduce a new type of antenna for the MCT to 
solve one of the problems. 
 

II. INTERSTITIAL MICROWAVE HYPERTHERMIA 
 
A. Interstitial Microwave Hyperthermia and 

Interstitial Radiation Therapy 
 

Hyperthermia is one of the modalities for cancer treatment, 
utilizing the difference of the thermal sensitivity between 
tumor and normal tissue.  In this treatment, the tumor or tar-
get cancer cell is heated up to the therapeutic temperature 
between 42 and 45 oC without overheating surrounding nor-
mal tissues.  Particularly, combination of the interstitial hy-
perthermia and the interstitial radiation therapy is effective 
for treatment of radiation resistive tumor [2].  Figure 1 shows 
the treatment system of the combined therapy.  This treatment 
system is realized by using the same catheters between the 
interstitial hyperthermia and the interstitial radiation therapy.  
In this system, firstly, thin microwave antennas such as the 
coaxial-slot antenna [5] with catheter heat the tumor.  After 
heating, only the antennas are pulled out of the catheters.  

Then, radiation sources such as the iridium 192 are automati-
cally inserted into the catheters by a “high dose rate afterload-
ing system”. 
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Fig. 1. Combined therapy. 
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Fig. 2. Basic structure of the coaxial-slot antenna. 
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B. Heating Characteristics of the Coaxial-Slot Antennas 
for the Combined Therapy 

 
The authors have studied the coaxial-slot antennas for the 

interstitial heating.  Figure 2 shows the basic configuration of 
the coaxial-slot antenna.  This antenna is composed of thin 
semirigid coaxial cable.  A ring slot is cut on the outer con-
ductor of a thin coaxial cable and the tip of the cable is short-
circuited.  Lts is the length from the tip to the center of the slot.  
The operating frequency is 2,450 MHz that is the one of the 
ISM (Industrial, Scientific, and Medical) frequencies. 

In order to obtain the large heating region, we use the ar-
ray applicator, which is composed of some antennas.  There-
fore, we employed the array applicator composed of four co-
axial-slot antennas.  In this paper, we analyze the heating 
characteristics of the array applicator by the numerical simu-
lation. 

First, we calculate the SAR (specific absorption rate) dis-
tribution around the antenna from 

2SAR E
ρ
σ=         [W/kg]                       (1) 

where σ is the conductivity of the tissue [S/m], ρ is the den-
sity of the tissue [kg/m3], and E is the electric field (rms) 
[V/m].  The SAR takes a value proportional to the square of 
the electric field around the antennas and is equivalent to the 
heating source generated by the electric field in the tissue.  
The SAR distribution is one of the most important character-
istics of the antennas for the heating.  Figure 3 (a) shows the 
calculated SAR distribution of the array applicator composed 
of four coaxial-slot antennas, which is inserted into a muscle 
(εr =47.0, σ =2.21 S/m at 2,450 MHz).  Here, Fig. 3 (b) 
shows the SAR observation plane.  In this calculation, Lts and 
the array space As were set to 5 mm and 15 mm, respectively.  
From Fig. 3 (a), we can observe the high SAR regions exist 
not only near each antenna but also at center of the array ap-
plicator.  The high SAR regions at the center of the array ap-
plicator are caused by the mutual coupling between each an-
tenna element. 
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(a) SAR distribution. 

 
TABLE I 

PARAMETERS FOR TEMPERATURE CALCULATION. 

Muscle 
Specific heart c [J/kg·K] 3,500 
Thermal conductivity κ  [W/m·K] 0.60 
Density ρ  [kg/m3] 1,020 

Blood 
Specific heart cb [J/kg·K] 3,960 
Density ρb  [kg/m3] 1,060 
Blood flow rate F [m3/kg·s] 8.33×10-6 
Temperature of the blood Tb [oC] 37.0 

Others 
Initial temperature [oC] 37.0 
Heating time [s] 600 
Net input power (total of the array) [W] 12.0 

 
Next, we calculate the temperature distribution around the 

array applicator.  In order to obtain the temperature distribu-
tion in the tissue, we numerically analyze the bioheat transfer 
equation [6] including the obtained SAR values by using the 
FEM (finite element method).  The bioheat transfer equation 
is given by 

( ) SAR2 ⋅+−−∇=
∂
∂ ρTTFcρρTκ

t
Tcρ bbb

    (2) 

where T is the temperature [oC], t is the time [s], ρ is the den-
sity [kg/m3], c is the specific heat [J/kg·K], κ is the thermal 
conductivity [W/m·K], ρb is the density of the blood [kg/m3], 
cb is the specific heat of the blood [J/kg·K], Tb is the tempera-
ture of the blood [oC], and F is the blood flow rate [m3/kg·s]. 

Figure 4 shows the temperature distributions around the 
array applicator composed of four coaxial-slot antennas.  
Here, the temperature observation plane is the same as Fig. 3 
(b).  The parameters of the temperature calculation are listed 
in Table I.  From this figure, we can observe a large and uni-
form heating region though the result of the SAR distribution, 
which is shown in Fig. 3 (a), is not uniform.  This result 
clearly shows that the array applicator is useful for develop-
ing the treatment system combining the interstitial microwave 
hyperthermia and the interstitial radiation therapy. 
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(b) Observation plane. 

Fig. 3. SAR distribution of the array applicator composed of four coaxial-slot antennas. 
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Fig. 4. Temperature distribution of the array applicator composed of 

four coaxial-slot antennas. 
 
 

III. MICROWAVE COAGULATION THERAPY 
 
A. Scheme of the MCT 
 

The MCT has been used mainly for the treatment of hepato-
cellular carcinoma.  Figure 5 shows the scheme of the MCT.  In 
the treatment, thin microwave antenna is inserted into the tumor 
and the microwave energy heats up the tumor to produce the 
coagulated region including the cancer cells.  We have to heat 
the cancer cells up to at least 60 oC above which the cells are 
coagulated.  At present, there are some problems to be im-
proved for the conventional MCT antennas.  Particularly, there 
is a problem that length of the coagulated region becomes long 
in the antenna insertion direction.  In this paper, we employed 
the coaxial-dipole antenna [7], [8] to solve this problem. 
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Fig. 5. Scheme of the MCT. 

 
B. Coaxial-Dipole Antenna 
 

Figure 6 shows the structure of the coaxial-dipole antenna.  
This antenna corresponds to the coaxial-slot antenna united 
with two conductive sleeves.  The sleeves are connected on the 
both side of the slot.  In this time, the length of the sleeves was 
set to 20 mm. 
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Fig. 6  Basic structure of the coaxial-dipole antenna. 

 
 
C. FDTD Calculations 
 

We investigated the SAR distribution of the coaxial-dipole 
antenna by using the FDTD method.  Figure 7 (a) shows the 
normalized SAR distributions of the coaxial-dipole antenna.  In 
addition, the SAR distribution around the coaxial-slot antenna 
is also presented in Fig. 7 (b) for comparison (the Lts of the an-
tenna is 10 mm).  From the result, we can observe the well-
localized SAR profile at the tip of the coaxial-dipole antenna in 
comparison with that of the coaxial-slot antenna. 

In order to understand the mechanism of generating the lo-
calized heating by the coaxial-dipole antenna, the current dis-
tribution on the antenna is calculated.  Figure 8 shows the cur-
rent distributions on the antenna.  Figure 8 (a) and (b) show the 
current distribution on the coaxial-dipole antenna and the coax-
ial-slot antenna, respectively.  In the FDTD calculation, the 
current distribution is defined as the strength of magnetic field 
in the orthogonal direction to the antenna axis.  From Fig. 8, in 
the coaxial-dipole antenna, a localized distribution appears 
around the sleeves, compared with the current distribution on 
the coaxial-slot antenna.  The localized current distribution 
generates the localized SAR distributions around the sleeves. 
 

IV. CONCLUSION 
 

In this paper, we described the characteristics of the thin co-
axial antennas for the minimally invasive microwave thermal 
therapies for cancer.  First, we showed the heating characteris-
tics of the array applicator for the interstitial microwave hyper-
thermia combined with the interstitial radiation therapy.  Next, 
we explained the scheme of the MCT, and introduced a solution 
for the problem of the conventional antenna.  As a further study, 
we are going to reveal the effectiveness of the antennas by con-
ducting the animal experiments. 
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(a) Coaxial-dipole antenna. 
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(b) Coaxial-slot antenna. 

 
Fig. 7. SAR distributions. 

The observation line is the line of the longitudinal direction of the antenna 
at the distance of 3.0 mm away from the antenna axis. 
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(a) Coaxial-dipole antenna. 
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(b) Coaxial-slot antenna. 

 
Fig. 8. Current distributions on the antenna. 
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